7.Gravitation
medium

If the angular velocity of earth's spin is increased such that the bodies at the equator start floating, the duration of the day would be approximately ........ minutes

(Take : $g =10 \,ms ^{-2},$ the radius of earth, $R =6400 \times 10^{3}\, m ,$ Take $\left.\pi=3.14\right)$

A

$60$

B

$480$

C

$1200$

D

$84$

(JEE MAIN-2021)

Solution

For objects to float

$mg = m \omega^{2} R$

$\omega=$ angular velocity of earth.

$R =$ Radius of earth

$\omega=\sqrt{\frac{g}{R}}$

Duration of day $= T$

$T =\frac{2 \pi}{\omega}$

$\Rightarrow T =2 \pi \sqrt{\frac{ R }{ g }}$

$=2 \pi \sqrt{\frac{6400 \times 10^{3}}{10}}$

$\Rightarrow \frac{ T }{60}=83.775$ minutes

$\simeq 84$ minutes

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.